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LETTER TO THE EDITOR 

Finite-size scaling in Hamiltonian field theory 

C J Hamer? and Michael N Barber$$ 
t Department of Theoretical Physics, Research School of Physical Sciences, Australian 
National University, Canberra, PO Box 4, ACT 2600, Australia 
$ Department of Physics, University of Washington, Seattle, WA 98195, USA 

Received 11 February 1980 

Abstract. A new method for investigating the behaviour of lattice Hamiltonian field 
theories is described. The method uses finite-size scaling to extrapolate finite-lattice results 
to the infinite chain limit. The technique is illustrated by application to the transverse king 
model and the O(N)-Heisenberg Hamiltonians ( N  = 2,3) in (1 + 1) dimensions. The 
accuracy of the method appears comparable to or better than existing approaches. 

Hamiltonian field theories on spatial lattices are of interest both in statistical mechanics 
and field theory (for a review see Kogut 1979). Currently, the only reliable method of 
investigating the critical behaviour and phase diagrams of such theories is through the 
analysis of the Rayleigh-Schrodinger perturbation series (see e.g. Hamer et a1 1978, 
1979). Attempts have been made to use renormalisation group techniques (Drell et a1 
1976, Jullien et a1 1978) but as yet such methods do not offer comparable numerical 
accuracy even for simple systems. 

In this Letter, we propose a new method which uses finite-size scaling (Fisher and 
Barber 1972) to extract the behaviour of the infinite lattice theory from the way physical 
quantities of interest vary with lattice size. In particular, we illustrate these ideas by 
summarising a series of finite-lattice calculations of the mass gap and p-function for the 
Hamiltonian versions of the two-dimensional Ising and O(N)-Heisenberg ( N  = 2, 3) 
models. Our results indicate that this procedure has an accuracy comparable to or 
better than that of series methods. Full details and further applications will be reported 
elsewhere. 

We begin with the Ising model. The relevant quantum Hamiltonian (Fradkin and 
Susskind 1978) is 

Here crl(m) are Pauli matrices, g is a dimensionless coupling constant (proportional to 
temperature), a is the lattice spacing, x = 2/g2 and the sum is over the M sites of a chain 
with periodic boundary conditions. In the limit M + 00, the ground state energy and 
mass gap of this model are known exactly (Pfeuty 1970). We have investigated the 
behaviour for finite M both analytically and numerically. Here we focus attention on 
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the mass gap 

Fb, M )  = (2a/g)(E1 -Eo), (2) 

where Eo and El are the energies of the ground state and first excited state respectively. 
The mass gap of (1) for finite M can be determined analytically using standard 

fermion techniques (see e.g. Schultz et a1 1964). Analysis of this result leads to the 
following conclusions. 

(i) For fixed x # 1, F(x,  M )  approaches its known limiting value exponentially fast 
in M ;  ie 

~ ( x ,  M )  = 211 - X I  + O(e-"-x'" ) ¶  M + m .  (3) 

F(1 ,M)=7r /4M+O(M-3) .  (4) 

F(x,  M ) = M - ' O ( / l  -x lM) ,  ( 5 )  

(ii) On the other hand, at x = xc = 1, 

(iii) Finally, if we consider a uniform limit, x + 1, M + 0;) with (1 - x)M = 0(1) ,  then 

where the scaling function can be computed exactly, and leads back to (3) and (4) in the 
appropriate limits. 

These results are rather familiar. They are precisely the predictions which follow by 
extending the results of finite-size scaling from conventional statistical mechanics 
(Lagrangian field theory) to Hamiltonian field theory. 

Let us recall the salient features of this theory (Fisher and Barber 1972). Let q ( g )  
be some quantity which in an infinite system varies near some critical coupling g, as 

(6) 

Then in a finite system of linear dimension n, finite-size scaling asserts that the 
behaviour of Y(g; n )  is described by the ansatz: 

Wg) = AIAgl-~, 4g = g - g, -$ 0. 

q ( g ;  n )  n " " Q d n / S ( g ) ) y  n +a, A g + O .  (7) 

[ ( g )  = 5ol4gI-". (8) 

q(g,;  n )  -const. n*'", n + w ,  (9) 

q(g , ;  n )  -- const. In n, n +Co. (10) 

Here [ ( g )  is the correlation length in the finite system, which diverges at g, as 

Thus if g, is known, (7) immediately implies that 

where for a logarithmic singularity (S = 0) the result is modified to 

To apply these results to Hamiltonian field theory we simply make use of the 
standard relationships between statistical mechanics and field theory (Kogut 1979), in 
particular, that between the mass gap and the reciprocal of the correlation length. 
Hence if we identify q in (7) and (9) with 1/[ = F, we immediately recover the exact 
results (4) and ( 5 )  provided Y = 1, which is true (Pfeuty 1970). Alternatively, v can be 
estimated directly for the behaviour of the p-function defined (Hamer et a1 1979) by 

P ( g ) / g  = (d/dg) ln[(g/2a)F(x)l. (11) 
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In the infinite system this possesses a simple zero at xc, while in the finite system, 
finite-size scaling predicts that 

p (gc, M )  == M - Y  M + m ,  (12) 

a result which can be confirmed analytically for the Ising Hamiltonian. 
To test the predictive capabilities of finite-size scaling in the present context, we 

show in figure 1 a log-log plot of both the mass gap and the p-function evaluated at 
x = x c  = 1 for several values of M. 

c 1 

M 

Figure 1. Log-log plots of finite lattice mass gaps (full circles) and p -functions (open circles) 
evaluate4 at x = x, = 1 versus M. Straight lines have been drawn through each set of results. 

The straight lines indicate that the scaling behaviour is established remarkably 
quickly. Equation (4) for the mass gap is confirmed to less than one percent, while from 
the p-function we estimate v to be unity to a similar precision. 

In practice, the critical value xc of the coupling in the infinite system is often not 
known. The finite-size scalingform (4) suggests that g, (or x,) can be estimated from the 
sequence of values of x for which successive ratios of F(x,  M )  and F(x,  M + 1) exactly 
scale, i.e. the value of x for which 

R l l , i ( x ) ~ M F ( x , M ) / ( M - l ) F ( x , M - l ) =  1. (13) 
In figure 2, we exhibit a plot of R M ( x )  against x for various values of M. All curves drop 
quite rapidly through the value unity near x = 1 even for small M. This criterion is 
actually equivalent to that which follows by extending (Sneddon and Stinchcombe 
1979) ‘phenomenological renormalisation theory’ (Nightingale 1976) to Hamiltonian 
field theory. It has been used previously to analyse numerical results for the mass gap of 
(1) (Sneddon and Stinchcombe 1979). As we shall now discuss, the criterion (13) also 
appears to be a very sensitive probe in more complex systems such as the O ( N ) -  
Heisenberg models. 
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Figure 2. Plot of scaled mass gap ratios RM(x) versus x for the k i n g  model. 

The lattice Hamiltonian version of these models takes the form (see e.g. Hamer et a1 
1979) 

M 
H = ( g / 2 a )  c { J 2 ( m )  - xn ( m )  . n ( m  + 1)) 

m - 1  

where the notation is as before, except that J ( m )  is the angular momentum operator 
appropriate to O ( N )  rotational symmetry and n ( m )  is an N-component spin vector 
normalised to unity. Strong coupling series for the mass gap and p-function of these 
models for N s 4 and M = CO have been derived and analysed by Hamer et a1 (1978, 
1979) and Hamer and Kogut (1979). 

Unfortunately, for finite M, it does not seem possible to derive any exact results and 
one must resort to a numerical procedure. However, unlike the Ising Hamiltonian, (14) 
has an infinite state space even on a finite chain. Thus no numerical procedure can 
presumably compute exact eigenvalues, and rather we require procedures which are 
sufficiently rapidly convergent to allow reasonably long chains to be investigated. We 
have devised two methods with this property. 

The first is based on the same approach as used in the strong coupling expansions 
(Hamer eta1 1979, Hamer 1979). Decompose (14) a s H  = (g /2a)(  Wo-xV)  where WO 
contains the single-site terms and V the coupling between sites. A set of strong 
coupling eigenstates of WO is now generated by successive applications of the operator 
V to an unperturbed eigenstate of WO. Using this basis a finite matrix representation of 
H is calculated and its eigenvalues determined by standard methods. For a model such 
as the Ising model (1) with a finite state space, this method ultimately terminates 
yielding the exact eigenenergies of the finite chain. For the O(N)-models, sufficiently 
accurate results follow by perturbing to sufficiently high order ( -  O(M)) .  Most of our 
results have been obtained by this procedure. 

We have also explored to some extent an alternative scheme in which H is reduced 
to a tri-diagonal form. Eigenenergies and other physical quantities can then be 
obtained iteratively without any explicit diagonalisation. The method is similar to 
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recursive techniques used extensively in band theory (see e.g. Haydock et a1 1975) and 
nuclear physics (see e.g. Whitehead et a1 1977). In the context of Hamiltonian field 
theory it appears to have a slight storage advantage over the first method and may allow 
larger chains to be investigated. This approach has in fact been applied to Z(2 )  and 
Z(3)-Ising spin systems by Roomany et a1 (1979). 

Using these methods we have been able to calculate the energies of the ground state 
and first excited state for the O(2)-model up to M = 6. The ratios R M ( x )  of successive 
mass gaps are plotted in figure 3. Their behaviour is remarkable. They drop to within a 
fraction of one percent of the value 1 at x - 2  and then stay there. This behaviour is 
established immediately even for M as low as 3. We regard this as a spectacular 
demonstration of a region of scale invariance. Such a region is of course expected 
(Kosterlitz 1974, JosC et a1 1977). It is hard to decide the exact value at which the 
region commences, but we estimate it to be at xc= 1.8zkO.1. This value is in good 
agreement with the series analysis result of Hamer and Kogut (1979). 

I ' I " ' ,  

2 
' x  

0 

Figure 3. Plot of scaled mass gap ratios R M ( x )  versus x for the 0(2)-model 

At xc, one expects (Kosterlitz 1974) that in the infinite system the mass gap varies as 

(15) 
with U = $. It then follows that the p-function has an algebraic singularity at xc. The 
form (15) is not that usually adopted (see (8)) in the derivation of finite-size scaling 
results. However, it is easy to adapt the finite-size scaling analysis to incorporate this 
behaviour. The key prediction for our present purposes is that 

F ( x )  - exp[ - a / ( x c  - x)"] 

p ( g ;  M)/gl,=,,- (In M)-('+")'", M + m .  (16) 
Unfortunately, the value of p at xc=1.8  does not obey this relation very well. 

However, the minimum values of the p-function for each M do scale somewhat better 
and yield an estimate of U = 0.9 i 0-4.  While the accuracy of this value is not very 
impressive, it should be compared with the value of U = 0.6 * 0.3 obtained by Hamer 
and Kogut (1979) via series analysis methods. Clearly results for larger lattices and a 
more refined method of analysis would be useful in this context. Nevertheless, it 
remains gratifying that the finite size analysis does give a clear indication (figure 3) of the 
scale invariant region. 

We have finally applied the same method to the 0(3)-Hamiltonian. This model has 
more degrees of freedom than the O(2)-model. Thus we have only been able to 
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compute the mass gap reliably for two- and three-site lattices. The ratio R3(x)  of these 
results remains distinctly above unity for all x ,  as one would expect if no transition 
occurs. While it is obviously unwise to place too much credence on this one calculation, 
it is significant that the corresponding quantities for the king and O(2)-models already 
exhibit the behaviour confirmed by results from larger chains. We hope to be able to 
extend the O(3)-results similarly. 

In summary, we have described a method of investigating the behaviour of lattice 
Hamiltonians by scaling finite-lattice quantities to the infinite lattice limit. Extremely 
accurate results were thus obtained for the Ising model. Undoubtedly, this high 
accuracy reflects the simplicity of this model. Indeed, the accuracy for the O(2) and 
O(3) models was much poorer, but the expected behaviour was detected. Thus the 
method does seem to be a very sensitive qualitative indicator for the presence (or 
otherwise) of a phase transition, and its nature. We feel that this type of analysis should 
be useful in the investigation of more complex systems. 

One of us (MNB) is grateful to the University of Washington and in particular Professor 
E K Riedel for their hospitality and to the National Science Foundation for partial 
support through grant number DMR 77-12676 A02. We would also like to thank Dr R 
J Baxter and Dr J J Rehr for useful discussions. 

References 

Drell S D, Weinstein M and Yankielowicz S 1976 Phys. Rev. D 14 487-516 
Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516-9 
Fradkin E and Susskind L 1978 Phys. Rev. D 17 2637-58 
Hamer C J 1979 Phys. Lett. 8213 75-8 
Hamer C J and Kogut J 1979 Phys. Reo. B 20 3859-70 
Hamer C J ,  Kogut J and Susskind L 1978 Phys. Rev. Lett. 41 1337-40 
- 1979 Phys. Rev. D 19 3091-105 
Haydock R, Heine V and Kelly M J 1975 J. Phys. C: Solid Sf. Phys. 8 2591-605 
Jose J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev.  B 16 1217-41 
Jullien R, Pfeuty P, Fields J N and Doniach S 1978 Phys. Rev.  B 18 3568-77 
Kogut J 1979 Rev.  Mod. Phys. 51 659-713 
Kosterlitz J Ivi 1974 J. Phys. C: Solid St. Phys. 7 1046-60 
Nightingale M P 1976 Physica 83 A 561-72 
Pfeuty P 1970 A n n .  Phys. 57 79-90 
Roomany H H, Wyld H W and Holloway L E 1979 Univeristy ofIllinois preprint 
Schultz T D, Mattis D C and Lieb E H 1964 Rev. Mod. Phys. 36 856-71 
Sneddon L and Stinchcombe R B 1979 J. Phys. C: Solid St. Phys. 12 3761-70 
Whitehead R R, Watt A, Cole €3 J and Morrison I 1977 Adv.  Nucl. Phys. 


